|
|
|||
|
||||
|
||||
|
|
SOLVE THIS
GEOMETRICAL PROBLEM |
|
|
|
||||
Given
points belonging to great circles (within an error: ±0.5⁰show): A-
Which belong to the same circle? B-
Which circles intersect? C-
Prove the points of intersection are unique. With
the data provided what are the coordinates of the intersection points. North
= 0⁰ A practical case: Several satellites were launched to fly on the same orbit. Their trajectory orbits are given by a set of points' coordinates for each. Mission control messed up and scrambled the point data. Which points belong to which satellite? Will they crash? If so what are the coordinates of the crash point. |
||||
|
||||
1. |
Points X = |
|
|
2. |
Line |
(-70.99⁰, -150⁰) to
(-18.6⁰, 150.0⁰) |
|
3. |
Point |
(-17.56⁰, -149.33⁰) |
|
4. |
Line |
(-27.1489⁰, -109.336⁰) to
(-27.148⁰, -109.336⁰) |
|
5. |
Point |
(29.2⁰, 25.519⁰) |
|
6. |
Point |
(30.483⁰, 47.891⁰) |
|
7. |
Point |
(-13.32⁰, -72.19⁰) |
|
8. |
Point |
(-13.647⁰, -72.8⁰) |
|
9. |
Point |
(-18.818⁰, -75.116⁰) |
|
10. |
Point |
(-14.745⁰, -75.09⁰) |
|
11. |
Point |
(-14.741⁰, -75.055⁰) |
|
12. |
Line |
(-51.527⁰, 113.40⁰) to
(-38.90⁰, 87.698⁰) |
|
13. |
Point |
(13.079⁰, 109.297⁰) |
|
14. |
Point |
(15.734⁰, 102.756⁰) |
|
15. |
Point |
(17.015⁰, 99.703⁰) |
|
16. |
Point |
(24.852⁰, 79.945⁰) |
|
17. |
Point |
(27.323⁰, 68.135⁰) |
|
18. |
Point |
(29.924⁰, 52.89⁰) |
|
19. |
Line |
(50.813⁰, -2.4743⁰) to
(50.813⁰, -2.4747⁰) |
|
20. |
Point |
(31.214⁰, 29.89.2⁰) |
|
21. |
Point |
(38.668⁰, 21.319⁰) |
|
22. |
Point |
(48.681⁰, 3.654⁰) |
|
23. |
Point |
(49.174⁰, 1.648⁰) |
|
24. |
Point |
(52.207⁰, -7.164⁰) |
|
25. |
Point |
(52.209⁰, -7.229⁰) |
|
26. |
Point |
(52.514⁰, -8.541⁰) |
|
27. |
Point |
(42.935⁰,-85.724⁰) |
|
28. |
Point |
(-20.273⁰, 30.935⁰) |
|
29. |
Point |
(36.939⁰, 31.172⁰) |
|
30. |
Point |
(29.388⁰, 31.157⁰) |
|
Copyright©2014-2015 |
web page
design: villarts@charter.net |